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Lattice Boltzmann simulation of a single charged particle in a Newtonian fluid
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The lattice Boltzmann method is used to study the sedimentaion of a single charged circular cylinder in a
two-dimensional channel in a Newtonian fluid. When the dielectric constant of the liquid is smaller than that
of the walls, there are attractive forces between the particle and the walls. The hydrodynamic force pushes the
particle towards the centerline at low Reynolds numbers. Due to the competition between the Coulomb force
and the hydrodynamic force in opposite directions, there is a critical linear charge densityqc at which the
particle will fall vertically off centerline, which is a metastable state in addition to the stable state on centerline,
for any initial position of the particle sufficiently far from the proximal wall. It is found that the rotation of the
particle plays an important role in the stability of such metastable states. The particle hits on the wall or falls
on the centerline when the linear charge density on the particle is greater or less thanqc . The simulation
method and the new phenomena are also helpful in the study of charged multiparticle suspensions.
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The study of the interaction and dynamics in charged c
loidal suspensions is of great interest in physics, chemis
biology, and medical science. It is well known that the r
cells in blood carry negative charge, and without that
behavior of aggregation of the red cells will change sign
cantly @1#. The charge plays a very important role in th
dynamics of the suspensions. On the other hand, the e
tence of wall may develop unexpected phenomena. For
ample, a strong and long-range attraction force is obser
between isolated pair of like-charged spheres@2#. Although
there is an extensive literature of empirical correlations
scribing the dynamics of charged particle suspensions@3#, a
fundamental understanding is limited to simple models d
to the difficulty in numerically simulating each particle
liquid accurately.

It is relatively simple to study one-particle suspension
liquid. The study of the dynamics of a single charged parti
in liquid will not only help develop simulation methods an
understand the dynamics of multiparticle suspensions, it
also provide new phenomena. Up to now, there is little
erature on the experimental and numerical study on a si
charged particle in liquid. The dynamics of a single u
charged particle sedimentation, however, has attracted m
attention. Early in 1981, Miyamuraet al. @4# studied the ratio
of the sphere velocities in the bounded and unbounded ca
which is called the wall correction factor. Joseph, Hu, a
their co-workers studied the sedimentation of tw
dimensional circular and elliptical particles in Newtonia
and non-Newtonian fluid in a wide range of Reynolds nu
ber with finite-element method@5,6#. Stabilizing in center-
line, oscillation and chaotic motion around the centerline a
far from the centerline were observed for different Reyno
numbers. Recently, two- and three-dimensional particles
Newtonian fluid were simulated with the lattice Boltzma
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method@7,8# and the simulation results were favorable to t
experimental results and finite-element simulation results
this paper, we will apply the lattice Boltzmann method
study the behavior of sedimentation of a single charged
cular particle in vertical tube. Due to the competition of t
hydrodynamic and electrostatic forces, there is a criti
value qc of the charge at which the particle will fall verti
cally off centerline, which is called a metastable state
addition to the stable state on centerline, for any initial po
tion of the particle sufficiently far from the proximal wal
We further find that the rotation of the particle plays an im
portant role in the stability of such metastable states. T
relationship between the charged particle and the initial
sition of the particle to obtain a metastable state is studie

We choose to work on a square lattice in two dimensio
@9#. Let f i(x,t) be a non-negative real number describing t
distribution function of the fluid density at sitex at time t
moving in direction ei . Here e05(0,0), ei5„cosp(i
21)/2,sinp(i21)/2…, i 51,2,3,4, and ei5„cosp(2i
21)/4,sinp(2i21)/4…, for i 55,6,7,8 are the nine possibl
velocity vectors. The distribution functions evolve accordi
to a Boltzmann equation that is discrete in both space
time @9#,

f i~x1ei ,t11!2 f i~x,t !52
1

t
~ f i2 f i

eq!, ~1!

where t is the relaxation time. The densityr and macro-
scopic velocityu are defined by

r5(
i

f i , ru5(
i

f iei , ~2!

and the equilibrium distribution functionsf i
eq are usually

supposed to be dependent only on the local densityr and
flow velocity u. A suitable choice reads@9#

f i
eq5ra i@113ei•u1 9

2 ~ei•u!22 3
2 u2#, ~3!

d-
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where a054/9, a15a25a35a451/9, and a55a65a7

5a851/36. The macroscopic equations can be obtained
a Chapman-Enskog procedure@9#. The pressurep and the
viscosity n are defined by the equationsp5cs

2r with cs
2

51/3 andn5(2t21)/6, respectively,
The boundary condition proposed by Filippova and Ha

@10# is used for the stationary complex geometry. Hydrod
namic forces on the particles are evaluated based on the
mentum exchange of the fluid and the solid boundaries@7,8#.
The translation of the center of mass of a particle is upda
at each Newtonian dynamics time step by using a so-ca
half-step ‘‘leap-frog’’ scheme@11#. The accuracy and robus
ness of this technique had been demonstrated by simula
sedimentation of a circular cylinder in a two-dimension
channel and comparing the simulation results with those
tained from a second-order finite-element method@8#.

In two dimensions the Coulomb force on a point char
located in front of an infinite plane wall can be obtained
the method of images@12#:

FIG. 1. The trajectories of a circular particle forq59.609 36
310211 C/cm ~dash!, q5qc51.009 364310210 C/cm ~solid!, and
q50 ~dot!, respectively. The inset is an enlarged part of the fig
showing the discrepancy of the trajectories forq5qc and q5qc

6dq ~dash-dotted and dash-dot-dotted!, where dq52.0
310216 C/cm.
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F5
qq1

(1)

4pe0z
, ~4!

whereq1
(1)5@(e12e2)/(e11e2)#q is the charge of the im-

age, e1 and e2 are the dielectric constants of the med
around the charge and the wall, respectively.z is the distance
between the charge and the infinite plane wall. The Coulo
force on a point charge between two infinite plane walls c
be obtained from a series of images,

F5(
i 51

` S qq1
( i )

4pe0z1
( i )

2
qq2

( i )

4pe0z2
( i )D . ~5!

Hereq1
( i )5q2

( i )5@(e12e2)/(e11e2)# iq and

z1
(1)52r 1 ,

z2
(1)52r 2 ,

z1
( i )5z1

( i 21)12r 2 ~ i 52n!,

z2
( i )5z2

( i 21)12r 1 ~ i 52n!,

z1
( i )5z1

( i 21)12r 1 ~ i 52n11!,

z2
( i )5z2

( i 21)12r 2 ~ i 52n11!,

n51,2,3, . . . , r 1 andr 2 are the distances from the particle
the left wall and the right wall, respectively. In numeric
simulation, only the first ten images are used to obtain su
ciently accurate results. Actually, since the factor (e1
2e2)/(e11e2) in the image chargeq( i ) is smaller than 1 in
absolute value, series~5! for the Coulomb force converge
rapidly. For example, the Coulomb force on the particle w
linear charge densityq51.009 364310210 C/cm and located
at xi520.627 83L in the tube, which will be described in
detail in the following section, is f 522.163 615 9
31029 N for the first ten images, whilef 522.163 616 8
31029 N for the first 100 000 images.

The system is a vertical channel of width 2L54d, where
d50.1 cm is the diameter of the cylinder. Thex axis is hori-

e

charge
FIG. 2. The vertical velocities, the horizontal velocities, and the angular velocities of the charged circular particle for linear
densitiesq59.609 36310211 C/cm ~dash!, q5qc ~solid!, andq50 ~dot!, respectively.
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axis of the channel. The cylinder is released atxi /L
520.627 83 with zero initial velocity and settles und
gravity. The density of the solid is 1.6 g/cm3, while the den-
sity and the kinematic viscosity of the fluid flow ar
0.8 g/cm3 and 0.1 cm2/s, respectively. The linear charg
density on the cylinder isq and distributed uniformly on the
cylinder. The liquid in the tube is lubricating oil with a d
electric constant 2.24, while the walls are made of glass w
a dielectric constant 7.00. Since the dielectric constant of
liquid is less than that of the walls, there are attractive for
between the charged particle and the walls. In our simu
tion, the inlet of the domain is always 10d from the moving
particles, whereas the downstream boundary is 15d from the
boundary. Zero velocities are applied uniformly for the in
and the normal derivative of the velocity is set to zero at
outlet.

Feng et al. simulated the sedimentation of a single u
charged cylinder with finite-element method@6#. It was
found that the cylinder stayed at the centerline finally for
terminal Reynolds number Re,8.5, where Re is defined b
Re5upd/n, with up the terminal velocity andn the viscos-
ity. To study the effect due to charge, we have performe
systematic simulation for cases with 0.5,Re,8.5. No quali-
tative difference was found for the sedimentary behavior
the charged particle from our numerical simulation. As
result, we show in this paper only the typical case with
'4. In the simulation, the radius of the cylinder is 13 latti
units andt50.6.

Figure 1 displays the trajectory of the cylinder with
linear charge densityq59.609 36310211 C/cm together
with the case forq50. Unlike that of the neutral particle, th
cylinder moves towards the wall first and then approac
the centerline with overshoot due to the electrostatic inte
tion between the charged particle and the wall. When
charged particle is close to the centerline, its trajectory
quite similar to that of the neutral particle, since the elect
static force vanishes at the centerline. The time-depen
velocity and angular velocity are shown as dashed line
Fig. 2. Thex component of the velocity decreases first a
then increases. There are two peaks on the angular velo
while only one peak without charge. The angular veloc
falls to 0 finally for both cases. It is interesting to find th
when the linear charge densityq is a bit larger, atq5qc
51.009 364310210 C/cm, there is a metastable state sho
as the solid line in Fig. 1. The particle moves towards
proximal wall first and then falls down vertically. The velo
ity is shown in Fig. 2. After transient thex component of the
velocity vanishes very quickly, while they component keeps
as a constant. They component of the velocity for the
charged particle is smaller than that of the neutral parti
since it is close to the boundary so that the wall correct
factor @4# is larger. It it noted from Fig. 2 that the angula
velocity does not approach 0. In Fig. 3 we show the strea
lines around the cylinder for the metastable state. The ve
ity distribution is also asymmetric.

Now we discuss the stability of the metastable state. N
merically we cannot determine whether the metastable s
is really a ‘‘metastable state’’ or only a transient state w
lifetime dependent on chargeq, since we have no idea o
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whether the particle will stay at the off-centered trajectory
not ~even forq5qc) if we simulate for extremely long time
The unavoidable numerical error makes the problem m
difficult. However, we can obtain a domain of attraction f
the metastable state by defining some constraint foruy/Lu or
time t and a tolerable error. For instance, if there is a co
straint for uy/Lu as uy/Lu,3 and xi /L has a tolerance o
0.001, the domain of attraction for the linear charge den
is dq52.0310216 C/cm. In Fig. 1, we also show the trajec
tory of the particle forq5qc6dq. The discrepancy is smal
and apparent in the inset, which is an enlarged part of
figure. We emphasize that the ‘‘metastable state’’ we ha
defined in this paper may not be a real metastable st

FIG. 3. The streamlines around the cylinder for the metasta
state.
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However, if we simulate only for a limit time with a tolerabl
error, we cannot say whether the trajectory leaves the crit
trajectory atq5qc or not; this trajectory atq5qc behaves
like a metastable state and we still call it as a metastable s
in this paper.

The rotation plays an important role in the stability of t
metastable states. To illustrate the effect, we introduce
exponential decay for the angular velocityv5v0exp@2b(t
2t0)#, which may be caused by an additional friction, whe
v0 is the angular velocity for the original metastable st
andb is a parameter. The metastable state loses its stab
as shown in the trajectories and velocities in Figs. 4 and 5
t050.13 s,b510 and 400, respectively. Thex component of
the velocity increases gradually from 0 and the parti
moves towards the centerline. It is found that the faster
decreasing of the angular velocity, the larger the speed of
particle returning to the centerline. In the figures we a
display the case with the exponential decay forv only exist-

FIG. 4. The trajectories of the circular particle forq5qc

while the angular velocity decreases gradually according tov
5v0exp@2b(t2t0)# for b510 ~dash-dot! andb5400~dot!, respec-
tively. The solid line is the original trajectory without perturbatio
The cross is the position of the particle att5t050.13 s. The dashed
line corresponds to the case with the exponential decay forv only
existing in the small time periodt0,t,t01dt, where dt
50.0052 s andb5400.
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50.0052 s andb5400. It is interesting to find that the sta
bility of the metastable state is lost although the angu
velocity restores very quickly fromt.t01dt. Comparing
the previous case with the sameb5400, the particle returns
to the centerline more slowly.

The metastable state does not restrict to a particular in
position. Numerically we find that there is a critical line
charge densityqc corresponding to a metastable state for a
initial position sufficiently far from the proximal wall. Figure
6 displays the critical linear charge densityqc for different
initial positions. We remind that the radius of the particle
0.25L so thatuxi u/L must be less than 0.75. Moreover, sin
the charged particle always moves towards the proximal w
first, there is no metastable state whenuxi u.xc . Numerically
we find thatxc /L is about 0.67.

To conclude, we have applied the lattice Boltzma
method to study the sedimentaion of a single charged ci
lar cylinder in a two-dimensional channel in a Newtoni
fluid. The Coulomb interaction force on the charged parti
is obtained by the method of images. When the dielec
constant of the liquid is smaller than that of the walls, the
are attractive forces between the particle and the walls

FIG. 6. The critical linear charge densityqc for different initial
positionxi .
g to the
FIG. 5. The vertical velocities, the horizontal velocities, and the angular velocities of the charged circular particle correspondin
trajectories displayed in Fig. 4.
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addition to the hydrodynamic force. Since the hydrodynam
force pushes the particle towards the centerline at low R
nolds number, there are two forces in opposite direction
the Coulomb force and the hydrodynamic force. Metasta
states are found in which the particles move down vertica
off centerline for critical linear charge densitiesqc . We fur-
ther find that the rotation of the particle plays an importa
role for the stability of such metastable states. Any pertur
tion on the rotation makes the metastable state unstable
the particle return to the centerline as that of the neu
particles. When the linear charge density on the particle
greater or less thanqc , the particle hits on the wall or falls
on the centerline. The simulation method and the new p
w

ut
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nomena is also helpful in the study of charged multiparti
suspensions.

Although the numerical simulations are performed in tw
dimensions, similar behavior is expected in three dim
sions. In three dimensions, the hydrodynamic force a
pushes the particle towards the centerline at low Reyno
numbers, while the Coulomb force attracts the particle to
proximal wall. The equilibrium of these two forces at a cri
cal charge density for any off centerline initial position r
sults in the metastable state that the particle moves d
vertically off centerline. This will be presented in our anoth
paper.

This work was supported by NSFC through Project N
19834070 and 19904004.
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